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Achieving explanatory depth and spatial
breadth in infectious disease modelling:
Integrating active and passive case
surveillance
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Abstract

Ideally, the data used for robust spatial prediction of disease distribution should be both high-resolution and spatially

expansive. However, such in-depth and geographically broad data are rarely available in practice. Instead, researchers

usually acquire either detailed epidemiological data with high resolution at a small number of active sampling sites, or

more broad-ranging but less precise data from passive case surveillance. We propose a novel inferential framework,

capable of simultaneously drawing insights from both passive and active data types. We developed a Bayesian latent point

process approach, combining active data collection in a limited set of points, where in-depth covariates are measured,

with passive case detection, where error-prone, large-scale disease data are accompanied only by coarse or remotely-

sensed covariate layers. Using the example of malaria, we tested our method’s efficiency under several hypothetical

scenarios of reported incidence in different combinations of imperfect detection and spatial complexity of the

environmental variables. We provide a simple solution to a widespread problem in spatial epidemiology, combining

latent process modelling and spatially autoregressive modelling. By using active sampling and passive case detection in

a complementary way, we achieved the best-of-both-worlds, in effect, a formal calibration of spatially extensive, error-

prone data by localised, high-quality data.
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1 Introduction

Predictive maps of disease risk, typically obtained by modelling the spatial heterogeneity in disease incidence as a
function of underlying covariates, can be crucial for targeting effective control and surveillance.1–6 However,
reliable prediction at the landscape scale is often hindered by lack of appropriate, high-resolution spatial data.
Traditionally, incidence data and potential explanatory covariates are collected either systematically – using active
sampling by researchers – or opportunistically – from clinical records reported at health facilities. Each of these
sampling strategies has its own limitations.7 For example, by collecting detailed data for both disease incidence
and related covariates, data from active sampling allows models to achieve high explanatory power but not to
make large-scale extrapolation and predictions in areas where fine scale covariates are not directly measurable.8,9

On the other hand, passive sampling yields data from a large number of geographically dispersed cases which are
more amenable for large-scale predictions, but these data often suffer from severe reporting biases10–13 and can be
paired with only coarse environmental covariates that have limited explanatory power.4 As the drawbacks of one
strategy are clearly the strengths of the other, modelling frameworks that consider these two types of data
simultaneously and complementarily would strengthen our biological insights and predictive power.
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Active sampling is typically conducted by research teams that focus on a small number of predetermined
locations, with collection of detailed environmental or epidemiological variables including clinical
samples,9,14–19 entomological indicators (for vector-borne disease),17,18,20–22 human demographic and socio-
economic factors9,19,23,24 or fine-scale environmental conditions.25,26 Such data can provide high power for
explaining variation in risk across focal sites,7 but lack predictive breadth across space because many of the
crucial covariates are not available for unsampled locations.9

Clinical records from passive case detection offer the potential of expansive descriptions of spatial incidence
patterns. However, since these incidence data often arise from self-reporting at health centres, they can be biased
by their opportunistic nature. Reporting bias is well acknowledged for numerous infectious disease systems27–29

and can be expressed as a combined function of distance from health facilities, the likelihood of asymptomatic
cases and sociodemographic factors10–13,30–35 or more complex measures of travel time.36 Despite this limitation,
health centre surveys remain the primary source of information for disease monitoring. Another drawback of
spatial models of incidence data gathered from passive case detection, relates to the availability of environmental
predictor data. If the locality of the patient is recorded, incidence data can be spatially plotted but researchers and
public health workers are unlikely to be able to directly measure some detailed explanatory variables at those
localities. Therefore, when modelling the incidence data, only large-scale but coarse layers are customarily
considered. While these bring more geographically expansive information than the highly localised survey data,
they generally consist of remotely sensed covariates and summary records such as bioclimatic, geomorphological,
vegetation indexes, human population density or road networks,9,37–40 that typically contribute limited
explanatory power.

Some studies7,14–16,23,41–44 make use of data from both active and passive case detections together, but focus on
independent analysis and comparison of results from these separate data sources rather than integrating them.
Analysing these two data sources jointly can be viewed as challenging15 because their limitations imply a trade-off
between explanatory depth and predictive breadth. However, there is clearly an opportunity to achieve
complementarity by analysing them on an integrated inferential framework. Here, for the first time, we develop
a spatial statistical model combining these two sources of incidence data to harness the maximum amount of
information for explanatory and predictive objectives.

Our framework takes a novel approach to both the response and the explanatory variables. The dual nature of
the incidence data requires specification of a statistical model that considers two different aspects of likelihood, one
for the localised but precise survey data, and another for the spatially extensive but imperfect clinical reporting
data. We build this part of the approach on two cornerstones of the statistical literature: the point process
model45,46 and the methodology of point transects.47 Point processes model events (e.g. infection cases) that
occur continuously in space according to an unknown intensity (a spatial surface to be estimated as a function
of covariates). We observe these events as arising from two different point transects, each having its own spatially
heterogeneous observation model. The first type of observation point is the active sampling location, where cases
are detected near-perfectly, but only for that particular set of geographical coordinates. The second type of
observation point is a clinic, where cases of the disease are reported from a broad geographical region but with
probabilities of detection that decay with distance from the clinic. Regarding the explanatory variables, some
environmental variables are easily collectable for both passive case detection and active sampling points, but more
important and powerful variables may be available only at the latter. By importing ideas from latent process
modelling48,49 we use the spatially extensive clinical data together with the data-rich survey data to reconstruct
latent covariates that may be hidden from direct or remote observation.

To validate the ability of our model to retrieve correct parameter values, we require these scenarios to be
accompanied by known intensity surfaces for both incidence and latent explanatory variables. These requirements
cannot be satisfied by real data sets, so here we have acquired our scenarios via realistic simulation, motivating our
examples from a real system of a vector-borne disease. To illustrate the generality of our approach, we have
hypothesised multiple contrasting scenarios of reporting bias and spatial distribution of the latent process
underlying disease incidence.

We chose malaria in West Africa as an ideal example of an important environmentally-dependent infectious
disease,50,51 for which human exposure and infection risk is highly spatially heterogeneous and dependent on
crucial environmental variables that influence interactions between people, mosquitoes, and parasites.40,52 Control
measures such as long-lasting insecticide treated nets (LLINs) have been crucial for impeding contact between
mosquitoes and people, and have led to substantial declines in malaria prevalence across Africa in the last
decade.50,51 However, the success of such an approach may be undermined by development of insecticide
resistance in mosquitoes, particularly in West Africa where rates are among the highest in the world.53–55
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Copious and widespread data on reported cases are often available from clinics (see for example www.
malariasurveys.org or www.dhsprogram.com), but detailed information on mosquito vector ecology and
insecticide resistance is only available for a limited number of sites.54,56–58 These challenges exist for many
other vector-borne diseases whose transmission is dependent on an ecological reservoir and rely on insecticide
use for control, such as for example dengue, Zika and chikunguya viruses,59 Lyme and other tick-borne disease,60

schistosomiasis,61 Rift Valley Fever,62 human African trypanosomias63 or West Nile Virus.64

2 Methods

2.1 Modelling approaches

For a given area of interest subdivided into a regular grid, we consider as our sampling unit the grid cell
i 2 f1, . . . ,Kg We first assume an underlying stochastic process f that generates numbers of cases Ni according
to an underlying, spatially heterogeneous rate �i. We also assume an observation process g that allows a subset of
the Ni cases to be reported at different sampling stations. We distinguish between two types of sampling stations:
S is the number of active sampling points (about which we are assuming a perfect and exclusive detection but at a
small distance, i.e. within the cell that contains them). We denote by J the number of clinics (about which we are
assuming an imperfect but long-ranging detection). The observation process g is therefore generating the vector of

incidence data reported in each ith cell at different stations Ii ¼ I1,i, . . . , IS,i, I Sþ1ð Þ, i, . . . , I SþJð Þ, i,Ui

� �
, given the

vector of probabilities Pi ¼ P1,i, . . . ,PS,i,P Sþ1ð Þ, i, . . . ,P SþJð Þ, i,Qi

� �
. Ui represents the number of completely

unreported cases in each ith cell (which is a missing value in the data), given the probability Qi of not reporting.

The general likelihood function of our models can be expressed as follows

L ¼
YK
i¼1

f Nij�ið Þ g IijPi,Nið Þ ð1Þ

We built our approach incrementally, developing three distinct modelling approaches with an increasing level of
complexity to allow comparison between the routes that might have traditionally been followed to analyse data
arising from active sampling (model 1) and passive case detection (model 2) with our new proposed route
(model 3), which reconstructs the latent processes and estimates the emergent patterns of disease incidence with
increased precision and accuracy.

2.1.1 Model 1 – active sampling data only

Here, we consider data that would be collected from active sampling at just a limited number S of active survey
sites. To analyse the relationship between disease incidence and detailed measures of covariates at a set of
predetermined survey points, model 1 takes the form of a Poisson Generalised Linear Model without any
spatially explicit component.

Although this is a straightforward model to fit using likelihood-based libraries in all statistical platforms, we
fitted it using Bayesian methods65 for consistency in the comparison with models 2 and 3 that follow. The response
variable is the number of observed diseases cases Ni at the location of the ith survey. We assume here (for
simplicity, but with no loss of generality) that all the cases at the survey location are recorded (hence, a local
detection probability of 1 for each case), although we acknowledge that with conventional diagnostic tests some
percentage of cases can be missed.66 If data are available on diagnostic sensitivity and specificity, our method can
be readily extended by incorporating false negatives or positives.

The model takes the form

Ni � Poisson �ið Þ ð2Þ

where the rate (�i) of disease incidence is

ln �ið Þ ¼ �0 þ
Xn
k¼1

�kXik ð3Þ

The linear predictor on the right-hand side of this expression comprises a set of n coefficients � and n
explanatory variables X measured at the ith survey location.
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Equations (2) and (3) can be generalised to take better account of specific features of the data. For example, it
may be relevant to use overdispersed forms of the likelihood (relaxing the Poisson assumption) or more
complicated functional forms of the linear predictor, involving polynomials, interactions or splines.

2.12 Model 2 – passive case detection only

Here, we considered only data coming from passive case detection. This model maintained the basic structure of
model 1, i.e. it is a Bayesian Poisson regression, with reported disease cases at human dwellings or communities
surrounding the health centres as the response variable and the set of environmental variables as predictors. Under
our scenarios, we assumed that one of the key predictor variables (insecticide resistance IR, see section 2.2) could
only be measured experimentally in active sampling sites, therefore we could not include it in equation (3).

We introduced the estimation of bias in reporting disease cases given by the distance from the health centres,
borrowing concepts from distance sampling theory,47 a group of methods, widely used to estimate the absolute
abundance or spatial density of animal or plant populations. The key underlying concept is the estimation of a
detection function (Pðd Þ), which represents the decay in the probability of detecting an object with increasing
distance (d) from the observer. Given the detection function and encounter rate, the absolute density of a
population can be modelled at a given point, assuming perfect detection at the location of the observer
P 0ð Þ ¼ 1. In our application, this has the interpretation that if a case arises in the immediate vicinity of the
clinic (d ffi 0), then it is certain to be reported. A plausible, but flexible decay function is fitted to paired data
of detections and distances. For example, detection of a malaria case from the ith location at the jth clinic, can be
modelled as a half-normal function of distance from the health centre di,j, by the following47

pðdi,jÞ ¼ exp �
d2i,j
2�2

 !
ð4Þ

where � is the shape parameter of the half-normal function (regulating how quickly the detection probability drops
with distance). The distance d can be Euclidean, or a more complicated function of accessibility (e.g. affected by
proximity between points along a given road network).

Any given case may be reported to any one of the available clinics, but clinics nearby are more likely to receive
the report. The probability of any one case being reported to any one clinic (accounting for other clinics) can be
modelled in terms of the distances of all the clinics from the point of occurrence of the case, as follows

Pi,j ¼
pðdi,jÞPJ

j¼1 pðdi,jÞ þQi

ð5Þ

The denominator here represents all possible outcomes, i.e. the probabilities that the case is reported to any one
of J centres, and the probability PQi

that the case goes completely unreported:

Qi ¼
YJ
j¼1

½1� pðdi,jÞ� ð6Þ

Note that Pi,j is the standardised form of pðdi,jÞ. In fact, pðdi,jÞis the probability of a case being reported at a
given clinic (considered in isolation), purely as a function of distance, whereas Pi,j is the probability of reporting at
a clinic, accounting for the effects of other clinics that are ‘‘competing’’ for the same reports and including Qi, that
is the probability of a case not being reported at all.

The likelihood of a data set comprising clinic reports may then be written as a multinomial process. In
particular, for a given number of actual cases Ni (see equation (2)), the likelihood of reported disease cases Ii
in the ith cell for the J clinics in the dataset is determined by the detection probabilities Pi that are function of
distances between the ith location and the clinics, by

Ii �Multinomial Ni,Pið Þ ð7Þ

where Pi ¼ P1,i, . . . ,PJ,i,Qi

� �
.

Fitting model 2 to the data yielded estimates of the shape parameter of the detection function (equation (4)) and
parameters of equation (3). Although it had no spatially explicit component, we used model 2 to generate a
reconstruction of the patterns of incidence across space, based on the coarse-level environmental covariates.
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Hence this model did not benefit from the fine-resolution covariates that could only be measured by detailed
experimental methods at survey points.

2.1.3 Model 3 – active and passive data combined

The process and observation model for this joint approach to data took the form of equations (2) and (7),
respectively. However, just like in model 1, equation (3) used the full set of predictors, including the partly-
latent variable (i.e. insecticide resistance, available only for active sampling points but not for regions of
passive case detection data collection and the rest of space). Our model for the latent variable IR postulated a
spatial autocorrelation structure,67 implying that even though we may not know the values of the latent variable at
two points in space, we can express a relationship about their expected degree of similarity. Any pair of K cells in
our grid, say i 2 f1, . . . ,Kg and k 2 f1, . . . ,Kg, was assumed to have a covariance, specified as a decreasing function
of their distance

covi,k ¼ expð��di,kÞ ð8Þ

with � � 0. Again, this is one of many possible structures and our overall approach is not constrained to this
functional form.

The distribution of the latent variable IR ¼ IR1, . . . , IRKf g in all the K cells, was therefore modelled as a
Gaussian field from an m-dimensional multivariate normal distribution, where each of the dimensions
represented the probability density of a cell in space

IRi �MVN �,
X� �

ð9Þ

Here, the mean vector � has length K (the total number of cells in geographical space), and
P

is a K� K
spatial covariance matrix68 with values of 1 on the diagonal and values covi,k for the i row and k column from
equation (8).

Model 3, hence, is fitted exactly as model 2 according to equation (7), but the linear predictor function
(equation (3)) included all the covariates, unlike model 2, which was missing the covariate of IR. In particular,
IR observations were used where available (at active sampling points), assuming that they were realisations from
equation (9).

2.2 Model validation

We used simulated data on malaria incidence and insecticide resistance within the primary mosquito vectors to
validate our models. Our specific validation aims were to (1) evaluate the match between the posterior distribution
of the coefficients and the simulation process that generated the data; (2) estimate bias in reporting the clinical data
as a function of distance between the location of a clinic and the village where the patient resides; and (3) recreate
the missing covariate of insecticide resistance cIR and to reconstruct the true incidence N̂.

Our simulation borrowed its setting from a study currently ongoing in Southwest Burkina Faso (MiRA –
Malaria in Insecticide Resistant Africa, Wellcome Trust 200222/Z/15/Z). The study covers an area of approx. 6000
km2 in the health district of Banfora in south-western Burkina Faso, comprising primarily West Sudanian
savannah which experiences a rainy season from May to October with little rain in other months. Malaria
transmission is stable throughout the year but peaks from May to November. The major vectors are Anopheles
gambiae and An. funestus. Like many other areas of Africa, the primary malaria control strategy is long lasting
insecticidal nets (LLINs) that are distributed at high coverage across the country (Burkina Faso National
Malaria Control Program, unpublished data). In contrast to some areas of Africa, recent LLIN distribution
campaigns have had little impact on malaria prevalence and it is hypothesised that this may be due to high
levels of insecticide resistance in local vector populations,69 which are amongst the highest on record.
Resistance to pyrethroid insecticides is widespread. Mortality after exposure (defined by the World Health
Organization (WHO) as the response to the stipulated discriminating dose of permethrin) ranges from 5
to 20%.20 For the purposes of data simulation, we assume that active sampling of malaria infections and
insecticide resistance levels is carried out in 12 villages, and that passive case data is available from patients
reporting to from 8 health centres distributed throughout the study area. This number and distribution of
passive and active sampling site was selected to represent the distribution of health facilities and likely
maximum amount of active survey data available.
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For the simulation, we considered a square grid with a 1 km2 resolution covering the study area. We generated a
dataset with reported incidence in each cell of the grid under a binomial N-mixture model70,71 by combining two
different processes: a state model, i.e. the biological process that generates malaria infection cases, and an
observation model, i.e. the process that affects the probability that infection cases are reported to a health centre.

To simulate the biological process, we considered the average altitude in the cell, average yearly temperature
(TEMP), annual rainfall (RAIN), human density (HUM), normalised difference vegetation index (NDVI) and
insecticide resistance (IR) in mosquitoes as potential predictors.9,38,72–77

Temperature and rainfall were derived from the WorldClim database (www.worldclim.org). NDVI
values were obtained using the package MODIStsp for R.78 To create the layer of human density, we used
a kernel density estimation79 using GPS points of the villages (307) in the study area and the population
census in each village (1755� 1804 mean� dev. std., Institut national de la statistique et de la démographie,
unpublished data) as weight field. Kernel bandwidth was chosen so as to minimise the least-squares cross
validation score (hlscv).

80

Insecticide resistance reporting has improved over time, and global maps of insecticide resistance at
coarse resolutions are now becoming available.77 However, little is known about its spatial distribution at local
scale.81 Therefore, to explore out model’s ability to retrieve latent variables of differing spatial complexity,
insecticide resistance was simulated by hypothesising three different scenarios of increasing
spatial autocorrelation, with parameter � of equation (8) set, respectively, to �1 ¼ 3:0, �2 ¼ 0:7 and �3 ¼ 0:3
(Figure 1, IR1, IR2, IR3).

The number of malaria cases, or true incidence, in each cell (Ni) was assumed to have a positive relationship
with temperature,9,74 rainfall,9,73,74 human density,9 NDVI9,37,38,72 and insecticide resistance,76 and was simulated
from equation (2) using the linear predictor

logð�iÞ ¼ �0 þ �HUMHUMi þ �NDVINDVIi þ �RAIN RAINi þ �TEMPTEMPi þ �IRIRi

We set the equation’s coefficients to the values �0¼ 2.90, �HUM¼ 0.50, �NDVI¼ 0.30, �RAIN¼ 0.20,
�TEMP¼ 0.25, �IR¼ 0.50. Having three distinct scenarios of insecticide resistance IR1, IR2 and IR3, we
obtained three scenarios of malaria infection cases N1i, N2i and N3i:

For the observation process, we accounted for simulated bias in reporting cases in each cell of the grid, by
considering a probability of reporting as a function of the distance between a given cell and each health centre. We
set the detection probabilities in each cell P i, jð Þ in accordance with equation (4) with pðdi,jÞ being the Euclidean
distance between the centroid of the ithcell of the grid and each jth health centre. We employed three different
shapes of the detection function, using different values of the shape parameter �A¼ 10, �B¼ 15, �C¼ 20 (Figure 1,
PA, PB and PC). Probability of reporting at active sampling stations was deliberately set at 1, to ensure that all the
infection cases occurring at the sampling stations were recorded.

By combining the three scenarios of disease incidence given by the biological process with the three scenarios of
detection function, we generated nine different scenarios of reported Incidence for each cell (Ii), under a
multinomial process given by equation (7). For each combination scenario, the response data comprised the
number of reported cases per cell (Figure 1, I1A to I3C).

Preliminary manipulation of environmental layers was done using the software QGIS,82 the simulations were
conducted in the statistical environment R,83 and Bayesian model fitting to the simulated data was carried out
using the program JAGS,84 interfaced with R via the package rjags.85

We analysed the simulated incidence data, using each of the three models described above. We used Markov
Chain Monte Carlo (MCMC) algorithms (code provided in Appendix S1) to fit each of the models to the
combination of environmental and incidence data. Relatively non-informative priors where chosen for all
process and observation parameters and for the cells of the map relating to the latent variable. To make this a
conservative test of the methodology, we employed priors wide variances. For the coefficients of the environmental
covariates we chose diffuse normal priors centred at zero, corresponding to a null hypothesis of no-effect for each
covariate. For the distance decay parameter r of the detection function, we adopted a uniform prior with limits
0–1000.71 For parameter � of the covariance matrix describing spatial autocorrelation in the latent covariate, we
used a gamma prior (shape¼ 0.1, rate¼ 0.1). To achieve convergence, models 1 and 2 were run for 3� 104,
whereas model 3 was run for 1.2� 106 iterations.

Means of posterior distributions with corresponding credible intervals were obtained for each model coefficient
�̂k as well as the shape parameters of the detection function �̂, (only relevant for models 2 and 3). For each model
and each simulated scenario, we generated spatial predictions of the expected true incidence N̂ and the latent
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Figure 1. Location of active sampling sites, simulation of reported malaria reported incidence (I1A, . . ., I3C) under three

scenarios of insecticide resistance (IR1, IR2, IR3) and three scenarios of reporting probability as a function of distance from

health centres (PA, PB, PC).
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covariate of insecticide resistance cIR. The accuracy of each parameter in the complete set � ¼ ðk, �Þ was examined
by calculating its relative bias from the true underlying value, as

RB� ¼
�̂ � �

j�j
ð9Þ

and by plotting the simulated versus reconstructed malaria incidence (for models 2 and 3) and between the
simulated and reconstructed insecticide resistance (for model 3).

3 Results

The full results with posterior summaries for all model parameters are reported in the supplementary material (S2).
Plots showing the relationship between the simulated and reconstructed malaria incidence and between the
simulated and reconstructed insecticide resistance are also presented in supplementary material (S3). Here, we
present an overview of these detailed results, by reporting on the values of relative bias WRB W for each explanatory
variable, in each model, under the nine different scenarios of reported malaria incidence (Figure 2).

Model 1 considered only the active sampling points, hence the single column under model 1 in Figure 2 does not
include extended results pertaining to the clinic detection function (see supplementary material S2.1 for full
results). Under model 1, the simulated malaria incidence was affected only by the environmental covariates
(that were common to all scenarios) including insecticide resistance. Overall, the results from model 1 showed
an average WRB W¼ 0.11 (std. dev.¼ 0.08). This was a persistent finding across all three simulated patterns for the
latent variable (IR), with low values of relative bias arising regardless of the degree of spatial autocorrelation of the
simulated insecticide resistance layer.

Figure 2. Visual summary of results of the three Bayesian models of reported malaria incidence (I) under different simulated

scenarios of insecticide resistance spatial patterns (IR) and probability of reporting at health centres (P). Model 1 used only active

sampling data from some localised surveys, model 2 only passive case detections at health centres, model 3 combined both data

sources together. The colour scale refers to the absolute values of the relative bias between the simulated coefficients of the variables

involved in the biological process (1 to 6), or the shape parameter of the detection function (7), and the estimate of the same

coefficient obtained by the mean of Markov Chain Monte Carlo (MCMC) posterior distributions. (	) indicates that the simulated

coefficient is within the corresponding 95% posterior credible interval, (�) indicates that it falls outside.
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Model 2, which considered only data from passive case detection, was less able to capture the underlying effects
of predictors on the reported malaria incidence (see supplementary material S2.2 for full results). The posterior
means of all coefficients showed an overall average WRB W¼ 0.89 (std. dev.¼ 1.52). A pattern of increasing bias
emerged in particular when considering scenarios of increasing spatial autocorrelation in the latent variable of
insecticide resistance (Figure 2). Since model 2 only included the passive detection cases, the latent variable was
completely missing from the list of covariates. In scenarios I1A, I1B and I1C, given by the same IR1, (low spatial
autocorrelation), the average WRB W was 0.87 (std. dev.¼ 1.53). Scenarios that assumed an intermediate level of
spatial autocorrelation in insecticide resistance (latent variable IR2) generated an average WRB W of 0.89 (std.
dev.¼ 1.54) whereas models assuming the most spatially autocorrelated distribution of insecticide resistance
(IR3) generated an average WRB W of 0.91 (std. dev.¼ 1.50). Contrary to the coefficients of the process model,
posteriors pertaining to the observation model were not sensitive to the different shapes of the detection
function (cases PA, PB or PC). Posteriors for the parameter �̂ of the detection function were highly accurate,
with absolute values of relative biases ranging from 0.06 to 0.09 (Figure 2). This model was able to partly
reconstruct disease incidence, but not in areas with relatively higher levels of insecticide resistance (Figure 3(a)).

Model 3 gave the best results in terms of estimating coefficients with low relative biases (see supplementary
material S2.3 for full results). Of particular note is the fact that the parameter for the latent insecticide resistance
variable RB�̂IR

showed a low WRB W varying between 0.02 and 0.08. Overall, the average WRB W across all variables was
0.07 (std. dev.¼ 0.07). As with model 1, but in contrast to model 2, the magnitude of bias in estimated parameters
was unrelated to the degree of spatial autocorrelation assumed in the latent variable. Similar to model 2, the
parameter associated with the case detection function (�̂) was estimated with good accuracy, but model 3 was more

IR3

N2

Simulated

Simulated(a)

(b)

Model 1 Model 2 Model 3

Model 1 Model 2 Model 3
0

20

40

60

80

100

0.0
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0.4

0.6

0.8

1.0
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Figure 3. Reconstructions of a simulated scenario of (a) malaria incidence and (b) insecticide resistance using Bayesian models.

Figure refers to scenario 3B (see Figure 1), with a high level of insecticide resistance spatial autocorrelation and an intermediate shape

of the detection function. Model 1 used only active sampling data from a small set of localised surveys, model 2 only passive case

detections at health centres, model 3 combined both data sources together.
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accurate in mapping case distribution (Figure 3(a), see also comparison of plots in supplementary materials S3.1
vs. S3.2). Additionally, the latent distribution of the layer of insecticide resistance was accurately reconstructed
using model 3 (Figure 3(b), and supplementary material S3.3).

4 Discussion

By analysing a wide range of plausible, simulated data sets of disease incidence and environmental variables
arising from active sampling and passive case detection, we uncovered some of the disadvantages of analysing
these two data types in isolation. Additionally, we propose a novel modelling framework aimed at achieving
complementarity between the two. We found that such an integrated, spatially explicit model, which acknowledges
both active sampling and passive case detection, leads to great improvements in precision and accuracy but also
enables the reconstruction of maps for the hidden variable across unsurveyed space.

As expected, when modelling data arising only from active sampling, we achieved high explanatory power and
relatively low bias, because the model had access to measurements of all the covariates underlying disease
incidence. The model considering only data coming from passive case detection allowed us to estimate the map
of malaria incidence with moderate accuracy. However, posterior distributions for most parameters were biased
which was likely due to missing data for the important variable of insecticide resistance. This condition reflects a
common situation in epidemiological studies, where passive case detection at health centres can provide a large
amount of long-term data with relatively moderate effort. Our simultaneous estimation of detection functions as
part of model inferences shows how to take account of imperfect reporting which is an integral characteristic of
such opportunistic data.12,27–29,35

With our proposed third model, we achieved a good synergy between depth and breadth in inference by
combining the strengths of the first two models, and allowing them to compensate for each other’s limitations.
In contrast to model using only passive case detection, our hybrid modelling framework allowed us to investigate
the effect of all the variables (including the latent one), and to produce accurate predictive maps of the disease
incidence and latent variable which were not possible with the model considering only active sampling. An
important achievement of our proposed model was the capability to deal with a latent variable, regardless of
its level of spatial autocorrelation. Thus, even in the absence of assumptions or any preliminary information on the
spatial structure of the latent variable (e.g. whether it is akin to uncorrelated ‘‘background noise’’ or has a highly
geography-dependent distribution), this model framework has potential to reconstruct it.

Our incremental approach showed that the gains in the accuracy of the results, moving from model 1 to model
3, were a direct result of increases in the spatial complexity used by the analytical approaches. Model 1 had no
explicit spatial component. Model 2 was used to generate predictions in space but it didn’t explicitly consider
spatial structure in its formulation. Model 3, by including the spatial autocorrelation structure in the partly latent
variable, led to the best results.

Our approach to latent variables readily generalises to processes other than insecticide resistance. We chose this
particular example of a latent variable, because IR has potential to impact the transmission and control of a wide
range of vector-borne diseases, including malaria, but is typically labour-intensive, time-consuming and expensive
to measure.86 Although WHO guidelines classify insecticide resistance in a binary way,86 the raw data from Tube
test bioassays measure the percentage survival of cohorts of similarly aged females after a given time period of
exposure to insecticide-treated surfaces. Therefore, to greatly increase the inferential value acquired from such
data, we treated insecticide resistance as a continuous variable ranging from 0 to 1. Our approach can be easily
extended to more specific measures of insecticide resistance, such as metabolic, cuticular and behavioural
resistance,53,87 or to other types of predictor data that can be collected in the field through active sampling but
are not easily obtainable via passive case detection, such as vector abundance and density.

When simulating and modelling the latent variable, we made an assumption of stationarity (the autocorrelation
function did not change in space or in time) and monotonicity (the autocorrelation always decreased with distance).
These two assumptions can be plausibly relaxed extending our autocorrelation function. For example, non-stationary
formulations could be achieved by expressing the rate of autocorrelation decay (�) as a function of latitude and
longitude or time. Alternatively, � could be expressed as log-linear combination of environmental covariates. Non-
monotonic formulations of the autocorrelation function could be produced for cases where periodic patterns exist in
space, but we currently see very little justification for such formulations based on biological first principles.

The ability to account for reporting bias of our response variable makes our approach easily applicable to other
scenarios where an imperfect detection needs to be considered, such as citizen science data88 or mobile phone
surveillance tools.89 When modelling the detection function, we made similar assumptions (stationarity and
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monotonicty) to those of the autocorrelation function for the latent variable and we hypothesised the observation
process was only affected by distance from health centres.10–12,30,32,34 In several real-world scenarios, additional
covariates of reporting probability may be involved, such as age and sex of the patient and socioeconomic
factors.31,33,35 Borrowing fundamental concepts from Distance sampling,47 we assumed that at zero distance the
probability of reporting the disease was 100%; however, asymptomatic disease in apparently healthy people is
common,66,90 and would not be observed in clinical data. Thus, incomplete detection at zero distance (based on
additional calibration data on the frequency of asymptomatic cases) must be considered.91 Finally, human mobility is
unlikely to be strictly related to Euclidean distance (a third implicit assumption of our detection function), so it may be
preferable to use the distance according to road network,6 when applying this model to real data. Global digital layers
describing the travel time between any two points on the globe (based on data such as road density, terrain
morphology and an political borders)36 could be easily included in a spatially explicit epidemiological model such
as ours.92 For all of these reasons, we suggest that preliminary analysis using pilot data and focussing only on
modelling the detection probability should be carried out before integrating it into the final model.

Our likelihood could be deployed using either a Bayesian or a frequentist setting. It is likely that in real life,
most epidemiological data sets will be accompanied by sufficient expert opinion to lead to influential priors, hence
we have illustrated using a Bayesian approach. However, we did not assume the existence of expert opinion here
because we were seeking to construct a conservative test of our methods.

The models presented here (in particular our model 3, using both data types) require a high computational
effort (see supplementary material for details). Notwithstanding their theoretical simplicity, the need to take
spatial structure into account with a large dataset slows down the Bayesian MCMC inference. Other model
fitting approaches such as the Integrated Nested Laplace approximation (INLA)93 may prove capable of
providing similarly accurate results but with faster processing.94

In quantitative ecology, data simulation, by generating random realisations from stochastic processes described
by a series of distributional statements, is exceedingly useful.71 Although simulated studies are not guaranteed to
be the same as a real epidemiological system, they allow objective validation of proposed frameworks on a wide
range of plausible scenarios, easily adaptable to other epidemiological studies. Although our simulation was
borrowing its settings from a study specifically looking at malaria, we demonstrated its applicability on a
broad range of contrasting scenarios. Therefore, we believe that such a framework can successfully work under
different epidemiological systems, where a combination of large-scale but opportunistic data are collected at the
same time as conducting a small number of localised scientific surveys.

The strength of our proposed analytical approach lies in its ability to use distinct solutions, such as latent
process modelling and spatially autoregressive modelling, in a fully integrated framework. In particular, we
demonstrated how active sampling and passive case detection, that have so far been considered independently
in the context of spatial epidemiology, can be used simultaneously and complimentarily in a package where the
strength of one compensates for the drawback of the other. Our method shows promise for complex spatial
epidemiology studies, by allowing different parts of the model to glean information from different types of
data. Such egalitarian and complementary use of two or more data types can be extended to make use of
digital or hard copy primary care records, irrespective of the sophistication of the health provision systems, the
density of the human population, or the nature of the disease.
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